
Connection Subgraphs in Social Networks

Christos Faloutsos∗† Kevin S. McCurley† Andrew Tomkins†

Abstract

A connection subgraph is a small (ie, viewable) subgraph
of a social network that best captures the relationship
between two people. We present a formal definition of
this problem, and an ideal solution based on computa-
tion of current in electrical networks, or equivalently,
based on random walks on weighted graphs. We then
give a series of approximations to the ideal solution that
produce high-quality connection subgraphs in real time
on very large (out of core) social network graphs.

We describe a working prototype, and we demon-
strate results on a social network graph derived from
the World Wide Web containing 15 million nodes and
96 million edges, for which our prototype produces good
quality responses within a few seconds.

1 Introduction

Suppose we are given a social network graph and asked
to find the relationship between two nodes ’A’ and
’B’. In the simplest case, the relationship is manifest
as an edge in the graph. However, social network
graphs are typically sparse, meaning that a vanishing
fraction of node pairs actually have an edge between
them. Nonetheless, they may be related due to a
composition of simple edges: ’A’ is related to ’X’, and
’X’ is related to ’B’. In this case, the relationship might
be encapsulated as a path in the graph. In real life,
however, the relationship between two people is often
multi-faceted; for example, ’A’ and ’B’ might have the
same manager and the same dentist. And the paths
connecting two people may not be vertex-disjoint; for
instance, the dentist may also be the sister of ’A’, or
may be dating the sister of ’A’. Representing the real-
life relationship between two nodes in a graph using a
single path is inherently limiting for two reasons: first,
any automated mechanism to pick the most important
path will make mistakes, and showing a subgraph will
increase the probability that the critical path is present;
and second, there may not be a critical path, as in the
example of two people who have written papers together
with a multitude of co-authors, rather than a single

∗On sabbatical from CMU-SCS
†IBM Almaden Research Center, 650 Harry Road, San Jose

CA 95120, USA

co-author. In this paper, we address the problem of
extracting in real time from an extremely large (out
of core) graph a small (amenable to visual inspection)
subgraph that best captures the connections between
two nodes of the graph.

Connection subgraphs are useful in many domains.
In a social network setting, connection subgraphs will
help us identify the few most likely paths of transmission
for a disease (or rumor, or information-leak, or joke)
from one person to another. They can also help
us spot whether an individual has unexpected ties
to any members of a list of individuals. In other
domains, connection subgraphs will help us summarize
the connection between two web sites using the hyper-
link graph; or the connection between two proteins in a
metabolic network; or between two genes in a regulatory
network.

More formally, the problem of interest is as follows:

Problem 1. (Connection subgraphs)

Given: an edge-weighted undirected graph G, vertices s
and t from G, and an integer budget b

Find: a connected subgraph H, with at most b vertices1

that consists of s, t, and a collection of s-t paths
and that maximizes a “goodness” function g(H).

The constraint on b is motivated by limitations on
visualization of graphs (e.g., b ≤ 100). The function g
represents the “goodness” of the solution H. If g is the
negative sum of edge weights inH, for instance, then the
resulting connection subgraph will be the shortest path
from s to t; this is a valid answer, but probably not the
most illuminating one. Likewise, on the other extreme,
if g is the number of edges of H then the connection
subgraph will be the densest set of s-t paths; this is
again probably not the best answer.

Problem 1 thus has two sub-problems:

• Sub-problem 1: What function g is an appropriate
“goodness”?

• Sub-problem 2: How can the subgraph H maximiz-
ing g be found quickly?

1In the following, the budget on vertices can be replaced with
a budget on edges as required by the problem domain.

In this paper we propose a particular function g, tailored
to produce connection subgraphs that capture salient
aspects of the relationship. We also propose algorithms
to compute the solution.

Our formulation and upcoming solutions are do-
main independent, but we illustrate our techniques on
a specific data set that we believe has a great deal of
interest in itself. Specifically, we used “named-entity”
extraction algorithms to derive a name graph from the
World Wide Web. In this graph, the nodes represent
names of people, and there is an edge of weight w be-
tween two names if the names appear in close proxim-
ity on w different web pages. Our data set contains
roughly 15 million distinct names, and about 96 million
distinct edges, drawn from over 500 million web pages.
The “name graph” is a valuable resource, because it
can help us find patterns, outliers, and connections. In
Figure 1 we show three connection subgraphs that were
produced by an interactive prototype system (described
in Section 6) that computes and displays good connec-
tion subgraphs in a few seconds.

Although the discussion in this paper focuses on
connection sub-graphs between persons, we also envi-
sion sub-graphs between any pair of named entities, e.g.,
a person and a company, or a company and a product.
We expect that connection subgraphs will prove widely
useful in interactive data exploration systems.

The structure of the rest of the paper is as follows.
In Section 2 we describe some related work, and con-
sider the problem of what constitutes a good objective
function g. The details of our approach are presented
in Sections 3 and 4, with experimental results on the
name graph in Section 5. We describe the interactive
system in Section 6, and summarize our conclusions and
suggest future directions in Section 7.

2 Related Work

The heart of this paper is Problem 1, namely how to find
“good” connection subgraphs. To our surprise, we have
not found any work that directly addresses this problem
in the published literature. There are well studied areas
in graph theory and networks that have some overlap
on the surface, but none attacks this problem. We
review this work next, show why some “reasonable”
approaches perform poorly, and we briefly review other
related work.

The two most natural measures for choosing “good”
paths would be the shortest distance, and the maxi-
mum flow criterion, in which the edge weights represent
a maximum flow on the edge. Both of these fail to cap-
ture a natural notion of “best path” in social networks.
Consider the graph of Figure 2 with unit weights. In
this case, the shortest paths from s to t go through

nodes 3 and 4, and both have length 2. Notice how-
ever that node 4 has many edges, as would be the case
if the node represented a famous person with many in-
cidental connections. Thus, one would intuitively pre-
fer the path through node 3, but this preference is not
captured by the traditional shortest path computation.
Other distance functions in graphs[19, 22] match more
closely with our intuition of which paths are best for
conveying a relationship. However, the measure g we
propose prefers subgraphs that contain multiple possi-
bly overlapping paths where possible.

100

s t

1 2
3

4

...5
6 99

Figure 2: A simple network where both shortest path
and network flow fail to adequately model social rela-
tionships. With all edges having weight 1, flow fails
to distinguish between the paths s,1,2,t and s,3,t, even
though the latter is shorter. Total path length fails
to distinguish between the paths s,3,t and s,4,t, even
though path through 4 is diluted by many extra con-
nections.

If we instead treat connection subgraph generation
as a maximum flow problem, we find that paths s,1,2,t
and s,3,t both carry 1 unit of flow, although we would
intuitively prefer the shorter path through node 3, since
social relationships tend to blur with distance. Thus
both shortest paths and network flow models fail to
adequately capture the notion of a “good” path in social
networks, although both seem related.

There has been considerable work on community
detection [11, 9, 12]. However, reporting the “commu-
nity” of two remotely related nodes will force us to far
exceed our budget b of allowable edges, and in cases
where the two people belong to different communities,
we are interested in relationships between their commu-
nities.

Problem 1 is also related to previous work on
survivable networks (e.g., see [13]). There, the objective
function g is usually expressed as the count of edge-
disjoint or vertex-disjoint paths from the source to the
destination. This measure also fails to adequately model
social relationships, as the two paths in Figure 2 through
nodes 3 and 4 have the same survivability: each path
’dies’ with the deletion of one node or edge.

Angelina Jolie

Cameron Diaz

310.853

Natalie Portman

25.3912

155.247

Pamela Anderson
75.9919

Sandra Bullock

9.16875

Nicole Kidman

3810.63

2550

7895.32

8135.82

4182.48

125.441

168.138

30.9087

82.3276
18.3924

(a) Nicole Kidman to Cameron Diaz

Bill Gates

John Chambers

11.5352
Walter Hewitt14.6263 Carly Fiorina

Sam Palmisano

0.10762

Esther Dyson Louis Gerstner
5.38299

Michael Dell
2.29426

1.4527

Michael Capellas
1.86502

0.35396

Nicholas Negroponte
72.6528

37.4691

2.92542

2.9828

4.93193

3.92175

(b) Nicholas Negroponte to Sam Palmisano

Alan Turing

Gillian Anderson

0.9931 (1)

Harry Potter
1.995 (2)

Kate Winslet

1.996 (2)

Sharon Stone
0.6036 (881)

0.5765 (48)

0.23684 (94)

(c) Alan Turing to Sharon Stone

Figure 1: Results graphs from the interactive system. Edge weights indicate the relative strength of the connection
via our algorithm. In the bottom example, original edge weights are also shown in parentheses.

Other related work includes the PageRank [21]
and personalized PageRank algorithms [15, 16]; graph
clustering, partioning, and matrix reordering [2, 4, 17,
23, 24]; electrical circuits and random walks [3, 7, 22];
and influence propagation [18]. “customer value” of a
node [5]; and other topics on sparse graphs [1, 6, 8, 20].

However, again, in all these references, we have not
found even the definition of the “connection sub-graph”
(Problem 1), let alone an attempt to solve it.

3 Our measure of goodness

The approach that we propose is related to electrical
currents in a network of resistors [7]. Let G(V, E) denote
an undirected weighted graph, and let C(e) denote the
weight of the edge e. We then interpret this graph as
an electrical network in which each edge e represents
a resistor with conductance C(e). In a nutshell, we
propose to choose as our connection subgraph the one
that can deliver as many units of electrical current as
possible. There are a few subtle traps, however, that can
lead us astray. Let’s start with a review of electricicty

laws. Table 1 lists the symbols and definitions.
Suppose that we apply a voltage of +1 volt to the

start node s, and ground (0 volts) on the destination
node t. Let I(u, v) be the current flow from u to v and
let V (u) denote the voltage at u. Then we have Ohm’s
law:

∀u, v : I(u, v) = C(u, v)(V (u)− V (v))(3.1)

and Kirchhoff’s current law:

∀v 6= s, t :
∑

u

I(u, v) = 0(3.2)

These laws uniquely determine all the voltages and
currents, as the solution to a linear system:

V (u) =
∑

v

V (v)C(u, v)/C(u) ∀u 6= s, t(3.3)

(where C(u) =
∑

v C(u, v) is the total conductance of
edges incident to the node u), with boundary conditions:

V (s) = 1, V (t) = 0(3.4)

Symbol Definition
G(V, E) an undirected graph
V set of vertices
E set of edges

N Number of nodes
E Number of edges
deg(u) degree of node u

V (u) Voltage of node u
I(u, v) current on edge (u , v)
C(u, v) conductance of edge (u , v)
C(u) =

∑
v C(u, v):

conductance of node u

Î(P) delivered current over “prefix path” P
CF (H) flow captured by subgraph H
s source node
t destination node
z ’universal sink’ node

Table 1: Symbols and Definitions

The voltages and currents of the resulting network
have fascinating connections to quantities related to
random walks along the graph. For example

Lemma 3.1. (See [7, p. 52]) Consider an electrical
network defined by (3.3), (3.4). Consider also all
random walks on the associated graph that (a) start
from the destination node t (b) end on the source
node s (c) following an edge (u, v) with a probability
that is proportional to its conductance (C(u, v)) (d)
without revisiting the destination node. (Zero or more
intermediate visits to the source node are permitted).
Then, the electric current I(u, v) is proportional to the
net number of times that such walks will traverse the
edge (u, v).

It is tempting to use this formulation of current
flow as our measure of goodness for a connection graph,
namely the subgraph of a given size that maximizes
the total current

∑
v I(v, t) flowing into the destination

node. However, that has a flaw: consider the graph
of Figure 2, and compare the two paths s → 3 → t
and s → 4 → t. In the above setting, they will both
carry the same current of 1/2 Amperes each, while we
would like the path through node 3 to be more favorable.
To compensate for this, we propose to follow [22], and
introduce a universal sink node z that is grounded:

V (z) = 0(3.5)

and is connected to every node u of the graph with an

edge of conductance

C(u, z) = α
∑

w 6=z

C(u,w)(3.6)

for some parameter α > 0. We used α=1, but
nearby choices make little difference. The universal sink
absorbs a positive proportion of the current that flows
into any given node, in a way reminiscent of ’tax’. Thus,
it penalizes a node with high degree, because it taxes it
not only directly, but multiple times as well, indirectly,
through its neighbors. An extra fringe benefit is that
it also heavily penalizes long paths, exactly because
it taxes them repeatedly for every node that the path
contains.

The intuition of Lemma 3.1 carries through, with
just a few slight modifications, namely, that the random
walks are also forbidden from reaching the universal
sink. In any case, paths that carry much current are
exactly the paths we want to include. More accurately,
we want paths that, after the ’taxation’ by the universal
sink z, are responsible for delivering high current to the
sink t. This is the concept of Delivered Current, which
we formalize next in subsection 4.1.

4 Algorithmic approach

The goodness function g(H) that we propose is exactly
the total delivered current that the chosen subgraph H
carries from source to sink, after the repeated taxations
by the universal sink z. We are now faced with the
problem of finding good connection subgraphs under
that measure. We can reduce the problem to that of
calculating the currents on the original graph, followed
by a process that extracts a subgraph that carries high
current to t. We refer to the latter problem as that
of display generation, and we discuss it in detail in
Section 4.1. Calculating current flows with a universal
sink is feasible even for very large graphs, but not in
an interactive environment. In order to address this
problem, we propose an optional preprocessing step,
called candidate generation. The idea is to quickly
produce a moderate-sized graph, by removing nodes and
edges that are too remote from s and t to influence the
solution. In our interactive system, this is what allows
us to produce good connection subgraphs within a few
seconds. We describe the candidate generation process
in Section 4.2.

4.1 Display Generation The display generator
takes as input the weighted, undirected graph G and
the flows I(u, v) on all (u, v) edges, and produces as out-
put a small, unweighted, undirected graph Gdisp (≡ H)
suitable for display to the user. Typically, we expect
Gdisp to have 20–30 nodes. Results showing how well

this algorithm performs are given in Section 5.
As we mentioned earlier, the proposed goodness

measure is the “delivered current” that the chosen
subgraph Gdisp carries from source s to sink t. Notice
that each atomic unit of flow (i.e., each electron)
must travel along a single path; it is thus possible to
decompose the flow into paths. This will allow us to
formalize the notion of current delivered by a subgraph.
We require the following sequence of definitions.

Definition 1. Node v is downhill from u (u →d v), if
I(u, v) > 0.

Or, identically, V (u) > V (v). We can then define
Iout(u), the total flow leaving node u:

Definition 2. Total out-flow from node u: Iout(u) =∑
{v|u→v} I(u, v).

Definition 3. (Prefix path) A prefix path is any
downhill path P that starts from the source s, that is,
P = (s = u1, . . . , ui) where uj →d uj+1

Obviously, a prefix path has no loops, because of the
downhill requirement.

Definition 4. (Delivered current) The delivered
current Î(P) over a prefix-path P = (s = u1, . . . , ui)
is the volume of electrons that arrive at ui from s,
strictly through P. Formally, we define Î() inductively
as follows, beginning with a single edge as base case:

Î(s, u) = I(s, u)

Î(s = u1, . . . , ui) = Î(s = u1, . . . , ui−1)
I(ui−1, ui)
Iout(ui−1)

In words, to estimate the delivered current to node ui

through path P, we are pro-rating the delivered current
to node ui−1 proportionately to the outgoing current
I(ui−1, ui). We are now ready to define the current
delivered by a subgraph; notice that this definition is
intentionally quite different from the current delivered
by applying voltages and computing current flows on
the subgraph alone.

Definition 5. (Captured flow) We say the cap-
tured flow CF (H) of a subgraph H of G is the total de-
livered current, summed over all source-sink prefix paths
that belong to H.

CF (H) ≡ g(H) =
∑

P=(s,...,t)∈H
Î(P)(4.7)

1

s

a

b

c

t

1

1

11

1
1

(a) original network

1/2

3/8

1

5/8

1/2

0

1/4

1/8
3/8

1/2

3/8
1/8

(b) voltages and amperages

1/10

s

a

b

c

t
2/5

(c) paths with delivered cur-
rent

Figure 3: A sample network, showing voltages, current,
and paths with delivered current.

Example Consider the graph shown in Figure 3.
For simplicity of exposition, and without loss of gener-
ality, we do not have a universal sink z (that is, we set
α=0). After the voltages of the source and sink have
been fixed to 1 and 0 respectively, the resulting volt-
ages are shown for each other vertex. These voltages
induce currents along each edge as shown. There are
five downhill source-to-sink paths in the graph. These
paths, with their delivered current are shown in Table 2.
The path that delivers the most current (and the most

s → b → t 2/5
s → a → c → t 1/4
s → b → c → t 1/10
s → a → b → t 1/10
s → a → b → c → t 1/40

Table 2: Current flow along paths in Figure 3

current per vertex) is s → b → t. We can compute the
2/5A delivered by this path by observing that, of the
0.5A that arrive at vertex b on the s → b edge, 1/5 de-
part towards vertex c, while 4/5 departs towards vertex
t. 4/5× 0.5A gives the 2/5A we seek.

Consider the {s, b, c, t} subgraph. We can compute
its captured flow by adding the delivered current of
all paths that travel exclusively through the subgraph;
namely, s → b → c → t and s → b → t; these paths
together capture 2/5 + 1/10 = 0.5A of total current.
We observe that this is one of two optimal 4-vertex
subgraphs that could be produced.

Algorithm Our optimization problem is now to
find a subgraph that maximizes the captured flow over
all subgraphs of its size. For this we apply a greedy
heuristic, as follows. First, it initializes an output graph
to be empty. Next, it iteratively adds end-to-end paths
(i.e., from source s to sink t) to the output graph.
Since the output graph is growing, a new path may
include vertices that are already present in the output
graph; the algorithm will favor such paths. Formally, at
each step the algorithm adds the path with the highest
marginal flow per capita. That is, it chooses the path P
that maximizes the ratio of flow along the path, divided
by the number of new vertices that must be added to
the output graph.

Notice that the inductive definition of delivered cur-
rent given above could easily be computed using dy-
namic programming. We will modify this computation
in order to compute the path that maximizes our mea-
sure.

We begin with a definition of entries in our dynamic
programming table Dv,k (for “delivery matrix”), to be
interpreted in the context of a partially built output
graph.

Definition 6. Dv,k is the current delivered from s to
v along the prefix path P = (s = u1, . . . , u` = v) such
that:

1. P has exactly k vertices not in the present output
graph

2. P delivers the highest current to v among all such
paths that end at v.

To compute D we exploit the fact that the elec-
tric current flows I(*,*) form an acyclic graph. For-
mally, we arrange the vertices into a sequence u1 =
s, u2, u3, . . . , t = un such that if node uj is downhill
from ui (ui →d uj) then uj follows ui in our ordering
(i < j). That is, the nodes are sorted in descending or-
der of voltage, and so electric current always flows from
left to right in the ordering. We will fill in the table D
in the order given by the topological sort above, guar-
anteeing that when we compute Dv,k, we will already

have computed Du,∗ for all u →d v. The entries of D
are computed as follows:

Algorithm 4.1. (Display Graph Generation)
Initialize output graph Gdisp to be empty
Let P be the maximum allowable path length

(trivially, the target size of the display graph)
While output graph is not big enough:

For i ← [1..|G|]:
Let v = ui

For k ← [2..P]:
If v is already in the output graph

k′ = k
else k′ = k − 1
Let Dv,k = maxu|u→dv(Du,k′I(u, v)/Iout(u))

Add the path maximizing Dt,k/k, k 6= 0

Intuitively, I(u, v)/Iout(u) represents the fraction of
flow arriving at u that continues to v. Multiplying this
by Du,k′ gives the total flow that can be delivered to
v through a simple path. The path maximizing our
measure is then the path that maximizes Dt,k/k over all
k 6= 0; it can be computed by tracing back the maximal
value of D from t to s.

4.2 Candidate Generation As mentioned earlier,
computing the voltages and currents on a huge graph
can be very expensive, and thus real-time responses are
impossible. To create a real-time variant of the system,
we propose an optional precursor step which we call
candidate generation. This step extracts a subgraph of
the original graph which we call the candidate graph.
The extraction algorithm must quickly produce from
the original graph a subgraph that contains the most
important paths. This subgraph is then treated as the
full graph for the remainder of the algorithm: current
flows are computed as usual but on the candidate graph,
and the display generator is applied to the result.

Formally, the candidate generation process takes a
s and t vertex in the original graph G, and produces a
much smaller graph (Gcand) by carefully growing neigh-
borhoods around s andt. The focus of the expansion is
on recall rather than precision; during display genera-
tion we will remove any spurious regions of the graph.
As we will show, using candidate generation it is possi-
ble to attain performance close to optimal with a latency
that is orders of magnitude smaller.

The Algorithm In the framework, candidate gen-
eration algorithms strategically expand the neighbor-
hoods of s and t until there is a significant overlap. As
the algorithm proceeds, it will expand s, discovering
other candidate vertices that it may choose to expand
later. Our underlying assumption is that the graph is

stored, say, in edge-list format, which makes node ex-
pansions inexpensive.

Let D(s) be the set of vertices first discovered
through a series of expansions beginning at s; we say
that s is the root of all vertices in D(s). We define E(s)
as the set of expanded vertices within D(s); that is,
they have been accessed in a data structure, and their
neighbors are now known. Likewise, let P (s) be the
set of pending vertices within D(s) that have not yet
been expanded. Similarly, define D(t), E(t), and P (t).
Note that D(s) is disjoint from D(t) since each vertex
is discovered only once, by expanding a vertex whose
root is either s or t. Recall that for weighted graphs, we
use C(u, v) as the weight of the edge from u to v. We
define deg(u) to be the degree (number of neighbors) of
u. Algorithm 4.2 gives the high level pseudocode.

Algorithm 4.2. (Candidate Generation) Given
a weighted, undirected graph G and two vertices s and
t, find Gcand ⊂ G which is much smaller than G but
contains most of the interesting connections between s
and t.

Set P (s) = {s} and P (t) = {t}.
While not stoppingCondition():

// pick v, the most promising node of P (s) ∪ P (t)
v ← pickHeuristic()
// and expand it
Let r be the root of v
Expand v, moving it from P (r) to E(r)
Add all new neighbors of v to P (r)

Thus, the details of the algorithm lie in the process
of deciding which node to expand next, and when to
terminate expansion.

Our algorithm repeatedly expands carefully selected
unexpanded nodes, chosen by the pickHeuristic(), until
a stopping condition stoppingCondition() is reached.
These are the two major routines, and we describe them
in the Appendix.

In effect, pickHeuristic() strives to suggest a node
for expansion, estimating how much delivered current
this node will carry. Thus, the heuristic favors nodes
that are (a) close to the source s or the sink t (b)
with strong connections (high conductance) and (c) low
degree, to avoid the ’famous-node’ effect (recall node 4
of Figure 2).

The stoppingCondition() puts limits on the size of
the output graph Gcand (count of expansions, count of
distinct nodes discovered, etc).

4.3 Computational Complexity The calculation
of currents on a network with a universal sink is

equivalent to solving the linear system (3.3) and (3.4). If
the graph has N nodes, then this can be done by direct
methods in O(N3) operations, but iterative methods
will often perform much better on sparse graphs. For a
graph with E edges, we would expect to perform O(E)
operations per iteration, and the number of iterations
depends on the gap between the largest eigenvalue and
the second largest eigenvalue. In the case of the names
graph we observed a fairly rapid rate of convergence,
and this can be expected for many other social network
graphs as well.

The display generator runs in time proportional to
ekb where e is the number of edges in the flow, k is
the maximum length of any allowed s-t path, and b is
the budget, or desired number of vertices in the display
graph. It requires space bounded above by vk, where
v is the number of vertices in the flow; this can be
improved by discarding table entries whenever all their
outedges have been processed. The display generator
could be implemented to run on a large out of core
dataset.

The candidate generator runs until its termination
conditions are met, performing a single disk seek per
expansion. Timings are provided in the appendix. Typ-
ically in our interactive system, the candidate generator
requires 1-1.5 seconds to run.

5 Experimental results

In this section we describe components of our prototype
system and evaluate the performance of the various
components. First, we give the experimental set up
(data and queries), and then we describe our results.
Our experiments were designed to answer the following
questions:
• How good is the proposed “goodness” function

g(H)
• Does our display generator algorithm capture most

of the delivered flow
• How well does the candidate generation algorithm

perform, and which settings of parameters work
best

5.1 Experimental setup We started from a text an-
alytics system called WebFountain[14] that has been
under development at IBM Almaden Research Center.
This system routinely crawls the web and inserts doc-
uments into a system on which we can run various
mining tasks. The name graph was derived from ap-
proximately 500 million web pages, using a simple rule-
based extractor for person names that processed each
page in turn. Whenever two names occurred within
a window of approximately ten words of one another,
an edge was recorded for the name graph. The de-

tails of the system are beyond the scope of this paper,
and name extraction alone has many problems associ-
ated with it, including linguistic conventions and canon-
icalization. The resulting graph contains N=15,020,632
names, with E=96,689,078 unique edges between them.
The name graph is stored on disk as a number of gdbm
files that can be jointly searched with a single seek per
access.

Query pairs In order to test our algorithms, we
selected a set of ten computer scientists and mathe-
maticians, and a set of seven actors and actresses. We
defined the query pairs shown in Table 3 for use in the
experiments. We also considered three termination con-

Dataset Name Description # pairs
AA Both nodes are ac-

tors/actresses
45

CSM Both nodes are
CS/mathematicians

21

Cross One node from each set 70

Table 3: Query data sets for experimental evaluation.

ditions for the candidate generator, C-tall , C-grande,
and C-vente, which result in small, medium and large
candidate graphs Gcand. Their exact details are in the
Appendix.

5.2 Goodness of g — case studies Figure 1 shows
the graphs output by our system for three representative
test cases. Figure 1(a) shows a small display graph link-
ing two movie actresses, Nicole Kidman and Cameron
Diaz. In this example there are strong links, with high
current, as expected.

Figure 1(b) shows a 10-node display graph for the
connections from MIT Professor Nicholas Negroponte
to IBM CEO Sam Palmisano. In this case the strongest
connection to Negroponte is through Esther Dyson, as
evidenced by the fact that they have both published
articles in Wired Magazine, have been mentioned to-
gether in the New York Times, and have authored books
that are compared to each other in Amazon. The sec-
ond node in the strongest path is Louis Gerstner, the
IBM CEO that Palmisano replaced. The rest of the
paths are weaker, involving the CEOs of most major
computer companies: HP (Fiorina), Microsoft (Gates),
Cisco (Chambers), and Dell (Dell). Notice that our
goodness function led to results that make intuitive
sense: the co-occurrences of Palmisano with the other
CEOs is expected, but not as strong and informative as
the connection with Dyson.

The final example 1(c) shows the network connect-
ing Alan Turing to Sharon Stone, who are two people
from largely disjoint communities. Without looking at

the graph, one would expect to find weak paths, if any
at all. The result is surprising: there is a connection,
and there is even a fairly strong connection through the
actress Kate Winslet, because she starred in a movie
about the Engima cipher machine, in which Alan Tur-
ing played a part durign his lifetime. We also see a con-
nection through Gillian Anderson because she stars in
a science fiction television show that is popular among
a technical audience. We note also that Alan Turing
has direct connections to Alan Thicke, Alan Alda, and
Bruce Lee (all of whom have a direct connections to
Sharon Stone), but these edges were discarded as car-
rying too little current. This example is also interesting
in that they come from distinct communities, and both
have high degree (Turing has 1,249 neighbors and Stone
has 6,014 neighbors). Again, our goodness function g()
led to results that are sensible and revealing.

5.3 Evaluation of Display Generation In this
section, we evaluate the performance of the display
generator by measuring the delivered current as a
function of the budget b of allowable nodes.

Figure 4 shows the fraction of delivered current
as a function of the size of the display graph for four
representative examples. The candidate generator for
these examples was run using a stopping condition
that resulting in 15–25K total edges in the candidate
graph. As the figure shows, the curve quickly flattens,
and a reasonably-sized display graph delivers the vast
majority of the total current.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

fr
ac

tio
n

of
 a

m
pe

ra
ge

number of nodes

Kleinberg-Newell
Rivest-Hoffman

Turing-Stone
Kidman-Diaz

Figure 4: Fraction of amperage captured by display
generator as a function of b (budget of allowed count
of nodes). Notice the sharp rise, and the diminishing
returns, in all cases

Table 4 shows aggregate results over a larger set
of experiments and candidate generator stopping condi-
tions. The second table in the figure shows total current
delivered in the candidate graph, and then in parenthe-

Total Elapsed Time (sec)
AA CSM Cross

C-tall 3.97 2.71 3.32
C-grande 4.59 6.4 5.08
C-vente 28.68 24.23 24.32
Current Measurements (Amperes)

AA CSM Cross
C-tall 618.47(99) 1.31(91) 0.76(86)
C-grande 625.52(99) 1.27(87) 0.78(83)
C-vente 727.26(94) 1.23(83) 0.64(79)

Table 4: Comparison of times and currents across
three datasets and three stopping conditions. Values
in parentheses represent percentage of total current
delivered by display graph of size 20.

ses the fraction of that current delivered in a 20-node
display graph. As stopping conditions change and the
expansion algorithm is allowed to proceed further, the
display generator captures a smaller fraction of the cur-
rent. A more surprising bias arises from the choice of
dataset. For Actors and Actresses, the display generator
captures the vast majority of the flow, suggesting that
while this neighborhood is extremely dense, nonetheless
there are a few nodes that are responsible for most of
the flow. Computer Scientists and Mathematicians fare
slightly worse; for condition C-grande, 87% of the flow
is captured on average, down from 99%. The Cross case
is again slightly worse, validating the intuition that re-
lationships between nodes that are not naturally related
come about due to a larger number of serendipitous low-
flow paths. Nonetheless, overall, the display generator
is able to capture the vast majority of current with a
relatively small output graph.

Over all these experiments, the first b=20 nodes
routinely carry most of the current. To conclude, the
display generator seems to be doing a good job of
capturing flow from the much larger candidate graph.

5.4 Evaluation of Candidate Generation
Heuristics In this section we summarize the results of
experiments on different distance measures and stop-
ping conditions for the candidate graph. Details are
given in the appendix. The stoppingCondition() shows
exactly the diminishing returns that we observed above;
the heuristics for node expansion (pickHeuristic()) usu-
ally perform about the same, with the surprising
exception that one natural-sounding heuristic performs
quite poorly—see Section A.2 for details.

Stopping Conditions Table 4 shows the average
runtime of the algorithm for each data set and each

stopping condition. Most interestingly, more resources
help for Actors/Actresses, but not Computer Scien-
tists/Mathematicians or for relationships between the
two groups (“Cross”). Nodes in the AA region of the
graph tend to have very high degrees, and may therefore
require significantly more expansion to find the good
paths. For the other regions, it is possible to find the
most important paths with significantly less computa-
tional effort. The timings given in the figure are for all
three stages of the algorithm in aggregate. A deeper ex-
ploration of the timing details shows that candidate gen-
eration typically requires more than 50% of the overall
effort, with the remainder roughly split between voltage
computation and display generation. As a takeaway, it
is quite feasible to find “good” graphs in the most im-
portant CMS case (representing well-connected individ-
uals without a massive media presence) over a 100M
edge graph in under three seconds on a single machine
without careful code tuning or optimization.

6 Software architecture

In the course of this work we constructed an interac-
tive end-to-end web system for experimentation. Our
system was build using a combination of perl, python,
C++, Apache, and php, and was run on a Pentium class
machine with a 2GHz processor running Linux 2.4. The
system provided an interface through which a user can
enter names for the source and sink, as well as further
parameters controlling the candidate generator, size of
the final graph output by the display generator, and dis-
play of results. When this is submitted through the web
interface, it runs the candidate generator, voltage cal-
culations, and display generator to create a final graph
for presentation to the user, usually in a few seconds. In
our prototype system, the graph display was performed
using the GraphViz system [10], which produces high
quality layouts but whose output has limited interac-
tive functionality. In our system, the user may click
on nodes and edges to explore the context in which the
name or relationship occurs.

We regard the interactive nature of the system as an
important tool for social network analysis, since reliable
inferences will often require further interpretation and
combination with other data sources (e.g., the web or
other databases). This requirement provides much of
the motivation for the formulation of Problem 1, since
we are constrained to only output a graph that is small
enough to visualize.

7 Conclusions

In this work, we defined and addressed the problem of
“Connection Graphs”, small graphs that convey much
information about the relationship of a pair of nodes. In

addition to posing the problem, additional contributions
are the following:
• We proposed the “delivered current”, a novel, in-

tuitive way to measure the goodness of a “Con-
nection Graph”. We showed that straightforward
methods like network flow and traditional short-
est paths lead to poor, counterintuitive answers
while our measure naturally gives high preference
to paths that are more likely to occur in a random
walk from the source to the sink (with the very
careful addition of a “universal sink” node).

• We provide the display graph generation algorithm
(Algorithm 4.1), a dynamic-programming algo-
rithm that attempts to find the best “Connection
Graph” with ≤ b nodes

• We provide the candidate graph generation algo-
rithm (Algorithm 4.2), with fast heuristics that
can handle huge, disk-resident graphs, in near-real
time, while still maintaining high accuracy.
Moreover, we implemented our algorithms in a

working prototype, on a real graph that we derived from
the Web. The graph has 15 Million nodes and 96 Million
edges.

There is considerable room for future work on the
subject of Connection Subgraphs, including their use
for finding patterns and outliers in large graphs, im-
proved candidate generation algorithms, generalizations
to graphs that connect more than two entities, new mea-
sures of “goodness”, and graph layout algorithms.

Acknowledgements: We would like to thank
Madhukar Korupolu for his help with the name graph
dataset and his observations on the Display Generator,
and Chris Palmer for his feedback on the voltage
computation.

References

[1] R. Albert, H. Jeong, and A.-L. Barabasi, Diame-
ter of the world wide web, Nature, (1999), pp. 130–131.

[2] U. Brandes, M. Gaertler, and D. Wagner, Ex-
periments on graph clustering algorithms, in Proc.
11th Europ. Symp. Algorithms (ESA ’03), LNCS 2832,
Springer-Verlag, 2003, pp. 568–579.

[3] A. K. Chandra, P. Raghavan, W. L. Ruzzo,
R. Smolensky, and P. Tiwari, The electrical resis-
tance of a graph captures its commute and cover times,
STOC, (1989), pp. 574–586.

[4] I. S. Dhillon, S. Mallela, and D. S. Modha,
Information-theoretic co-clustering, in The Ninth ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD 03), Washington, DC,
August 24-27 2003.

[5] P. Domingos and M. Richardson, Mining the net-
work value of customers, KDD, (2001), pp. 57–66.

[6] S. Dorogovtsev and J. Mendes, Evolution of net-
works, Advances in Physics, 51 (2002), pp. 1079–1187.

[7] P. Doyle and J. Snell, Random walks and electric
networks, vol. 22, Mathematical Association America,
New York, 1984.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos,
On power-law relationships of the internet topology,
SIGCOMM, (1999), pp. 251–262.

[9] G. Flake, S. Lawrence, C. L. Giles, and F. Co-
etzee, Self-organization and identification of web com-
munities, IEEE Computer, 35 (2002).

[10] E. . Gansner and S. C. North, An open graph
visualization system and its applications to software
engineering, Software - Practice and Experience, 30
(1999), pp. 1203–1233.

[11] D. Gibson, J. Kleinberg, and P. Raghavan, In-
ferring web communities from link topology, in Ninth
ACM Conference on Hypertext and Hypermedia, New
York, 1998, pp. 225–234.

[12] M. Girvan and M. E. J. Newman, Community
structure is social and biological networks.

[13] M. Grötschel, C. L. Monma, and M. Stoer, De-
sign of survivable networks, in Handbooks in Opera-
tions Research and Management Science 7: Network
Models, North Holland, 1993.

[14] D. Gruhl, L. Chavet, D. Gibson, J. Meyer,
P. Pattanayak, A. Tomkins, and J. Zien, How to
build a webfountain: An architecture for very large-
scale text analytics, IBM Systems Journal, 43 (2004),
pp. 64–77.

[15] T. H. Haveliwala, Topic-sensitive pagerank, WWW,
(2002), pp. 517–526.

[16] G. Jeh and J. Widom, Scaling personalized web
search, WWW, (2003), pp. 271–279.

[17] G. Karypis and V. Kumar, Parallel multilevel k-
way partitioning for irregular graphs, SIAM Review,
41 (1999), pp. 278–300.

[18] D. Kempe, J. Kleinberg, and E. Tardos, Maximiz-
ing the spread of influence through a social network,
KDD, (2003).

[19] D. Liben-Nowell and J. Kleinberg, The link pre-
diction problem for social networks, in Proc. CIKM,
2003.

[20] M. E. J. Newman, The structure and function of
complex networks, SIAM Review, 45 (2003), pp. 167–
256.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd,
The PageRank citation ranking: Bringing order to the
web, tech. rep., Stanford Digital Library Technologies
Project, 1998. Paper SIDL-WP-1999-0120 (version of
11/11/1999).

[22] C. R. Palmer and C. Faloutsos, Electricity based
external similarity of categorical attributes, PAKDD
2003, (2003).

[23] S. van Dongen, Graph Clustering by Flow Simulation,
ph.D. thesis, University of Utrecht, May 2000.

[24] S. Virtanen, Clustering the chilean web, LA-WEB
2003, (2003).

A Appendix: Details on Candidate Generation

We begin by describing the particular heuristics used
in the candidate generator; we then report some experi-
ments comparing different parameter settings, and draw
conclusions regarding the appropriate choice.

A.1 Heuristics and justifications
pickHeuristic() : Recall that the pickHeuristic()

function chooses the next node to expand during can-
didate generation. We do this within a framework
based on a distance function on the in-process candidate
graph. Among the pending nodes, we always choose for
expansion the one that is closest to its root, in some
sense. There are several reasonable ways to define close-
ness. We introduce a (possibly asymmetric) length on
edges, and define the distance between two nodes u and
v as the minimum over all paths from u to v of the
sum of the lengths of the edges along the path. Thus,
the decision about what to expand next is encoded as
a weighted, directed, graph distance. This formulation
tends to focus on particular types of expansions, and
does not allow others, but has the advantage that we
know the exact shortest path from any expanded node
to its root.

We considered eight definitions of the length of an
edge from u to v, based on three flags that can each
be set two ways. Generally, the distance is given by
f(n/d), where the three flags control the values of f , n,
and d, as follows:

Numerator: If the distance is degree-weighted then
n = deg2(u), otherwise n = deg(u).

Denominator: If the distance is count-weighted then
d = C(u, v)2, otherwise d = C(u, v)

Multiplicative: If the distance is multiplicative then
f(x) = log(x), else f(x) = x.

Thus, the basic distance function is d(u)/C(u, v),
and the degree-weighted, count-weighted, multiplicative
distance function is log(deg2(u)/C(u, v)2).

We give a brief intuition for these definitions. If
the graph were not weighted then the basic distance
function would be deg(u). A more natural measure
might be deg(u) + deg(v), but we haven’t yet expanded
v so we don’t have access to its degree; thus, we cannot
include the deg(v) term in our definition, and we must
instead employ an asymmetric distance. The distance
function as given treats lower-degree nodes as closer,
so the expansion is designed to discover longer paths
through low-degree nodes rather than shorter paths
through high-degree nodes. Recall however that our
graph is weighted, and that nodes with high weight

edges should be considered close together because they
have a relatively strong connection. This explains the
presence of the term C(u, v), corresponding to the
weight of the edge.

Finally, we motivate the notion of multiplicative
distance rather than traditional additive distance. By
taking the logarithm of the edge weight and adding
these values along a path, we compute the logarithm
of the product; since the logarithm is monotonically
increasing, comparisons of path lengths result as they
would for multiplication of edge weights. Multiplication
is a reasonable model here for the following reason.
Consider a path in which all edges have weight 1. If the
degrees of vertices along the path are d1, d2, . . . , dk then
the number of vertices reachable by expanding all paths
of the given length in a tree with branching factor di at
level i would be R =

∏
i di. If the sink were uniformly

located among all such nodes, the probabilty of reaching
the sink would be proportional to R. Thus, in an
idealized model, lower multiplicative distance represents
nodes that are “closer” to the root in the sense that
a sequence of expansions with the given degree would
reach a smaller set of vertices.

Results for these various distance functions are
shown in Section A.2.

Termination condition - stoppingCondition() :
Finally, we must discuss termination conditions. We
define three thresholds for termination; the algorithm
will stop as soon as any threshold is exceeded. First,
we adopt a threshold on total expansions, to limit the
total number of disk accesses. Second, we adopt a larger
threshold on discovered vertices, even if those vertices
have not yet been expanded, to limit memory usage.
And finally, we adopt a threshold on number of cut
edges (edges between D(s) and D(t)), as a measure of
the connectedness of the set of nodes with the src as a
root with the set of nodes with the sink as a root.

This completely characterizes the candidate gener-
ation algorithm.

A.2 Evaluation of distance functions As men-
tioned, we considered three termination conditions,
C-tall , C-grande, and C-vente, which result in small,
medium and large candidate graphs Gcand. Recall that
the algorithm terminates when any of three thresholds
is exceeded: the number of cut edges, the number of ex-
panded vertices, and the number of discovered vertices.
The termination conditions we considered are described
in Table ??. Finally, we considered all eight distance
measures; the eight different measures are derived by
turning on or off each of three different settings: degree-
weighted, count-weighted, and multiplicative.

The number of cases in the overall experimental

Additive Multiplicative

deg deg2 deg deg2

Case wuv w2
uv wuv w2

uv wuv w2
uv wuv w2

uv

C-tall(AA) 620.97(99) 620.97(99) 620.97(99) 620.97(99) 630.29(100) 582.32(99) 620.97(99) 630.29(100)

C-tall(CSM) 1.39(89) 1.28(95) 1.42(91) 1.42(91) 1.4(88) 0.68(98) 1.49(84) 1.4(88)

C-tall(Cross) 0.84(85) 0.83(86) 0.56(91) 0.84(85) 0.91(83) 0.52(89) 0.69(88) 0.91(83)

C-grande(AA) 620.97(99) 620.97(99) 620.97(99) 620.97(99) 642.71(99) 613.88(99) 620.97(99) 642.71(99)

C-grande(CSM) 1.32(87) 1.23(94) 1.37(89) 1.35(87) 1.36(84) 0.78(98) 1.37(76) 1.36(84)

C-grande(Cross) 0.78(85) 0.76(86) 0.52(85) 0.78(85) 0.85(83) 1.06(72) 0.64(81) 0.85(83)

C-vente(AA) 745.47(93) 742.35(93) 736.63(93) 741.8(94) 732.1(94) 634.52(99) 753.11(92) 732.1(94)

C-vente(CSM) 1.21(83) 1.2(91) 1.28(88) 1.25(87) 1.23(80) 1.21(86) 1.21(66) 1.23(80)

C-vente(Cross) 0.59(86) 0.68(85) 0.39(79) 0.58(85) 0.48(85) 1.56(57) 0.35(72) 0.48(85)

Table 5: Comparison of distance measures. Columns represent distance measures, as defined in Section A.1. Rows
represent stopping conditions and datasets. Values in each cell are the current delivered through the candidate
graph, with the value in parentheses representing percentage of this current captured in the display graph.

Condition Cut edges Expanded Known
C-tall 500 500 10000

C-grande 2000 2000 20000
C-vente 10000 50000 1000000

design is therefore 8 × 3 × (45 + 21 + 70) = 3264. For
each case, we ran the candidate generator and measured
wallclock time and number of edges in the resulting
graph. We then ran the voltage computation on the
candidate graph and measured wallclock time and total
current. Finally, we ran the display generator and
measured wallclock time and total captured current in
the display graph.

Distance Measures Table 5 compares total cur-
rent delivered across the eight different distance mea-
sures we employed.

First, we consider distance measures for candidate
generation, show in Table 5. We observe that as the al-
gorithm is given more resources (ie, as the stopping con-
dition changes), the best distance measure also changes.
In fact, there are cases where normal or count-weighted,
normal or degree-weighted, and additive or multiplica-
tive distance measures are preferred. However, there are
a few specific recommendations that we can make.

First, we consider our three data cases, which
represent three common types of queries:

CSM: Source and sink are connected, and live in a
network of medium to sparse connectivity. This
is the most common case for applications of the
algorithm. In this case, degree-weighted additive
distance performs best, but in fact all measures
perform comparably with one exception: count-
weighted multiplicative distance performs horribly
in stopping conditions C-tall and C-grande. This
suggests that when resources are limited, a few

very strong edges may initially bias the search in
inappropriate directions.

AA: Individuals are connected, and live in a very
dense network. In all stopping conditions, the
eight measures perform within 5% of one another.
The very low-resource C-tall performs as well as
C-grande, but the much higher resource thresholds
of C-vente finds graphs that are roughly 15%
better in terms of delivered current. Offsetting this
improved current, however, is an average running
time that increases by a factor of 3-10.

Cross: Source and sink have no “natural” connec-
tions. In this case, count-weighted multiplicative
distance dramatically outperforms all other mea-
sures in stopping conditions C-grande and C-vente,
suggesting that focusing heavily on stronger paths
may be the best way to find connections between a
source and sink that are simply not well-connected.

Overall, we observe that the simplest distance mea-
sure (“normal” distance) never performs the best, and
normal multiplicative distance performs well in all cases
except for the somewhat unusual high-resource Cross
condition in which count-weighting should be intro-
duced.

